欧美日韩亚洲国产,欧美一级电影网站,国产日韩欧美视频在线,日本三级理论日本电影

              • 姓名: 馬林
              • 性別: 男
              • 職務(wù): 深地過程與戰(zhàn)略礦產(chǎn)資源重點實驗室副主任
              • 職稱: 研究員
              • 學(xué)歷: 博士研究生
              • 電話: 
              • 傳真: 
              • 電子郵件: malin@gig.ac.cn
              • 通訊地址: 廣州市天河區(qū)科華街511號
                簡  歷:
              •   馬林研究員、博士生導(dǎo)師,基金委優(yōu)秀青年科學(xué)基金獲得者(2021),現(xiàn)任同位素地球化學(xué)國家重點實驗室黨支部書記,所黨委委員,學(xué)位委員會委員。主要從事巖石地球化學(xué)研究,在青藏高原南部洋?-陸俯沖轉(zhuǎn)換的精細(xì)化深部動力學(xué)重建和地殼生長演化方面提出了新認(rèn)識。主持或參與了國家自然科學(xué)基金青年、面上、優(yōu)青、重點和創(chuàng)新群體項目、國家重點研發(fā)專項、第二次青藏高原科考、中科院戰(zhàn)略先導(dǎo)專項等項目的研究。已發(fā)表國內(nèi)外學(xué)術(shù)論文53篇,其中以第一/通訊作者身份在Geology、Geochimica et Cosmochimica Acta、Journal of Geophysics Research、Journal of Petrology、Chemical Geology和Lithos等刊物發(fā)表SCI論文20篇。Google Scholar論文被引用1600余次,H?-index19。曾獲得中國科學(xué)院院長優(yōu)秀獎(2013),入選中國科學(xué)院青年創(chuàng)新促進(jìn)會(2017),現(xiàn)任國際綜合性期刊《The Innovation》與核心期刊《地球化學(xué)》青年編委,長期為Nat. Comm.、Geology、GCA、JPet、Tectonics、GSAB、Lithos等學(xué)術(shù)刊物審稿,2016、2018年度Lithos突出貢獻(xiàn)審稿人(Outstanding Contribution in Reviewing),2017年度Journal of Asian Earth Science突出貢獻(xiàn)審稿人。指導(dǎo)的研究生獲中科院院長優(yōu)秀獎與朱李月華優(yōu)秀博士生獎。

                  

                  2022.01-至今??? 中國科學(xué)院廣州地球化學(xué)研究所,研究員;

                  2022.04-至今??? 中國科學(xué)院廣州地球化學(xué)研究所,學(xué)位委員會委員;

                  2021.04-至今??? 中國科學(xué)院廣州地球化學(xué)研究所,黨委委員;

                  2019.10-至今??? 同位素地球化學(xué)國家重點實驗室,黨支部書記;

                  2019.9-2019.12?? 英國Cardiff University,高級訪問學(xué)者;

                  2016.11-2017.10? 英國Cardiff University,訪問學(xué)者;

                  2016.01-2021.01? 中國科學(xué)院廣州地球化學(xué)研究所,副研究員;

                  2013.07-2015.12? 中國科學(xué)院廣州地球化學(xué)研究所,助理研究員;

                  2009.07-2013.06? 中國科學(xué)院廣州地球化學(xué)研究所巖石地球化學(xué)專業(yè),博士;

                  2006.09-2009.06? 中國科學(xué)院廣州地球化學(xué)研究所構(gòu)造地質(zhì)學(xué)專業(yè),碩士;

                  2002.09-2006.07? 蘭州大學(xué)資源環(huán)境學(xué)院地質(zhì)學(xué)系地質(zhì)學(xué)專業(yè),學(xué)士。?

                ?

                社會任職:
                研究方向:
              •   1) 板片匯聚邊緣巖漿巖巖石學(xué)與大陸動力學(xué),主要關(guān)注洋-陸俯沖轉(zhuǎn)換階段巖漿巖成因,以及深部動力學(xué)過程的淺表響應(yīng);

                  2) 顯生宙大陸地殼生長與演化,主要關(guān)注大陸地殼的形成、保存與成分分異演化及機(jī)制;

                  3) 弧地殼巖漿過程、物質(zhì)循環(huán)與金屬成礦,重點關(guān)注俯沖帶物質(zhì)遷移、擴(kuò)散、循環(huán)和高溫過程中的年代學(xué)與同位素分餾效應(yīng)、機(jī)制與應(yīng)用。?

                ?

                獲獎及榮譽:
              •   2021年8月,國家基金委優(yōu)秀青年科學(xué)基金
                  2021年7月,中國科學(xué)院廣州地球化學(xué)研究所優(yōu)秀黨務(wù)工作者
                  2019年7月,中國科學(xué)院廣州地球化學(xué)研究所優(yōu)秀共產(chǎn)黨員
                  2016年11月,中國科學(xué)院青年創(chuàng)新促進(jìn)會?
                  2016、2018年度,《Lithos》突出貢獻(xiàn)審稿人(Outstanding Contribution in Reviewing)
                  2017年度,《Journal of Asian Earth Science》突出貢獻(xiàn)審稿人
                  2013年7月,中國科學(xué)院院長優(yōu)秀獎
                  2013年7月,北京市教育局優(yōu)秀畢業(yè)生
                  2013年3月,教育部研究生國家獎學(xué)金
                  2012年7月,中國科學(xué)院研究生院三好學(xué)生標(biāo)兵
                  2009年7月,中國科學(xué)院研究生院優(yōu)秀畢業(yè)生
                  2009年7月,中國科學(xué)院研究生院三好學(xué)生標(biāo)兵
                  2008年7月,中國科學(xué)院研究生院優(yōu)秀學(xué)生干部
                  2008年7月,中國科學(xué)院研究生院三好學(xué)生?
                  2007年7月,中國科學(xué)院研究生院三好學(xué)生
                  2005年2月,蘭州大學(xué)大學(xué)生創(chuàng)新創(chuàng)業(yè)計劃優(yōu)秀作品獎
                  2004年10月,蘭州大學(xué)社會實踐先進(jìn)個人
                  2004年5月,蘭州大學(xué)優(yōu)秀學(xué)生會干部
                  2004年5月,蘭州大學(xué)優(yōu)秀共青團(tuán)員
                代表論著:
              • 2023

                [1].?Ma, L., Wang, Q., Kerr, A.C., Li, Z.X., Dan, W., Yang, Y.N., Zhou, J.S., Wang, J., Li, C., 2023. Eocene magmatism in the Himalaya: Response 1 to lithospheric flexure during early Indian collision? Geology, 51(1), 96–100, DOI:10.1130/G50438.1.

                2022

                [2].?Wang, J., Gleeson, M., Smith, W.D., Ma, L., Lei, Z.B., Shi, G.H., Chen, L., 2022. The Factors Controlling Along-arc and Across-arc Variations of Primitive Arc Magma Compositions: A Global Perspective, Frontiers in Earth Science.?DOI: 10.3389/feart.2022.1055255

                [3].?Zhou, J.S., Huang, C.C., Wang, Q., Ren, Z.Y., Ma, L., Hao L.L., Zhang L., 2022. Olivines and Their Melt Inclusions in Potassic Volcanic Rocks Record Mantle Heterogeneity beneath the Southern Tibet, Journal of Petrology, 63(11), https://doi.org/10.1093/petrology/egac103.

                [4].?Fan, J. J., Wang, Q., Ma, L., Li, J., Zhang, X.Z., Zhang, L., Wang, Z.L., 2022. Extreme Mo isotope variations recorded in high-SiO2?granites: Insights into magmatic differentiation and melt–fluid interaction. Geochimica et Cosmochimica Acta, 334, 241-258.?https://doi.org/10.1016/j.gca.2022.08.009.

                [5].?Zhang, M.-Y., Hao, L.-L., Wang, Q., Qi, Y., Ma, L., 2022. B–Sr–Nd isotopes of Miocene trachyandesites in Lhasa block of southern Tibet: Insights into petrogenesis and crustal reworking. Frontiers in Earth Science, 10:953364, doi: 10.3389/feart.2022.953364.

                [6].?Hao, L. L., Wang, Q., Ma, L., Qi, Y., & Yang, Y. N., 2022. Differentiation of continent crust by cumulate remelting during continental slab tearing: Evidence from Miocene high-silica potassic rocks in southern Tibet. Lithos, 426-427, 106780.

                [7].?Liu, X., Liang, H., Wang, Q.*, Ma, L.*, Yang, J.H., Guo, H.F., Xiong, X.L., Ou, Q., Zeng, J.P., Gou, G.N., Hao, L.L., 2022. Early Cretaceous Sn-bearing granite porphyries, A-type granites, and rhyolites in the Mikengshan–Qingxixiang–Yanbei area, South China: Petrogenesis and implications for ore mineralization. Journal of Asian Earth Sciences,105274.

                [8].?Tang,?G.J., Wyman, D.A., Wang, Q. Ma, L., Dan, W., Yang, Y.N., Liu, X.J., Chen, H.Y., 2022. Links between continental subduction and generation of Cenozoic potassic–ultrapotassic rocks revealed by olivine oxygen isotopes: A case study from NW Tibet. Contributions to Mineralogy and Petrology, 177, 53. https://doi.org/10.1007/s00410-022-01920-x

                [9].?Hao, L.L., Wang, Q., Kerr, A.C., Wei, G.J., Huang, F., Zhang, M.Y., Qi, Y., Ma, L., Chen, X.F., Yang, Y.N., 2022. Contribution of continental subduction to very light B isotope signatures in post-collisional magmas: Evidence from southern Tibetan ultrapotassic rocks.?Earth and Planetary Science Letters, 584, 117508.?https://doi.org/10.1016/j.epsl.2022.117508.

                [10].?Huang T.Y., Wang, Q., Wyman, D.A., Ma, L., Zhang, Z.P., Dong, H., 2022. Subduction erosion revealed by Late Mesozoic magmatism in the Gangdese arc, South Tibet.?Geophysical Research Letters. 49, e2021GL097360.?https://doi.org/10.1029/2021GL097360.

                [11].?馬林*,王強(qiáng),唐功建,李成. 2022. 岡底斯陸殼屬性與顯生宙生長演化. 大地構(gòu)造與成礦學(xué). 46(6), 1170-1184. doi: 10.16539/j.ddgzyckx.2022.04.000

                [12].?耿啟凡,馬林*. 拉薩南部始新世曲水輝長巖成因及其對同碰撞巖漿活動的指示意義. 大地構(gòu)造與成礦學(xué). (待刊)

                2021

                [13].?Ma, L., Gou, G.N., Kerr, A.C., Wang, Q.*, Wei, G.J., Yang, J.H., Shen, X.M., 2021. B isotopes reveal Eocene m lange melting in northern Tibet during continental subduction. Lithos,?106146, https://doi.org/10.1016/j.lithos.2021.106146.

                [14].?Ma, L.*,?Wang, Q., Kerr, A.C., Tang, G.J., (2021). Nature of the pre-collisional lithospheric mantle in Central Tibet: Insights to Tibetan Plateau uplift. Lithos, 106076. https://doi.org/10.1016/j.lithos.2021.106076

                [15].?Fan, J.-J., Wang, Q.*, Li, J., Wei, G.-J., Ma, J.-L., Ma, L.*, Li, Q.-W., Jiang, Z.-Q., Zhang, L., Wang, Z.-L., and Zhang, L., 2021, Boron and molybdenum isotopic fractionation during crustal anatexis: Constraints from the Conadong leucogranites in the Himalayan Block, South Tibet. Geochimica et Cosmochimica Acta, 297,?120-142. https://doi.org/10.1016/j.gca.2021.01.005.

                [16].?Liu, X., Wang, Q.*, Ma, L.*, Yang, J.H., Ma, Y.M., and Huang, T.Y., 2021. Early Paleozoic and Late Mesozoic crustal reworking of the South China Block: Insights from Early Silurian biotite granodiorites and Late Jurassic biotite granites in the Guangzhou area of the south-east Wuyi-Yunkai orogeny. Journal of Asian Earth Sciences, 219: 104890.

                [17].?Liu, X., Wang, Q.*, Ma, L.*, Gou, G.N., Ou, Q. and Wang, J., 2021. Late Jurassic Maofengshan two‐mica granites in Guangzhou, South China: fractional crystallization products of metasedimentary‐rock‐derived magmas. Mineralogy and Petrology, 1-19. https://doi.org/10.1007/s00710-020-00733-9

                [18].?Zhou, J.S., Wang, Q., Xing, C.M., Ma, L., Hao, L.L., Li, Q.W., Wang, Z.L., Huang, T.Y., 2021. Crystal growth of clinopyroxene in mafic alkaline magmas. Earth and Planetary Science Letters. 568: 117005. https://doi.org/10.1016/j.epsl.2021.117005.

                [19].?Yang, Z.Y., Wang, Q., Hao, L.L., Wyman, D.A., Ma, L., Wang, J., Qi, Y., Sun, P. and Hu, W.L., 2021. Subduction erosion and crustal material recycling indicated by adakites in central Tibet. Geology. 49(6): 708–712, https://doi.org/10.1130/G48486.1

                [20].?Hu, W.-L., Wang, Q*, Yang, J.-H., Tang, G.-J., Ma, L., Yang, Z.-Y., Qi, Y., and Sun, P., 2021. Petrogenesis of Late Early Cretaceous high-silica granites from the Bangong–Nujiang suture zone, Central Tibet. Lithos, 402–403, 105788. ?https://doi.org/10.1016/j.lithos.2020.105788.

                [21].?Hao L.-L., Wang, Q*, Kerr A. C., Yang J.-H., Ma L., Qi Y., Wang J., and Ou Q. 2021. Post-collisional crustal thickening and plateau uplift of southern Tibet: Insights from Cenozoic magmatism in the Wuyu area of the eastern Lhasa block. GSA Bulletin, 133 (7-8), 1634–1648, https://doi.org/10.1130/B35659.1.

                [22].?Xia X.-P., Meng J.-T., Ma L., Spencer C.J., Cui Z.X., Zhang W.F., Yang Q., Zhang L., 2021. Tracing magma water evolution by H2O-in-zircon: A case study in the Gangdese batholith in Tibet. Lithos, 106445. https://doi.org/10.1016/j.lithos.2021.106445.

                [23].?蒙均桐,夏小平,馬林,姜子琦,徐健,崔澤賢,楊晴,張萬峰,張樂. 西藏岡底斯地區(qū)殼源巖漿水含量差異:來自鋯石水含量的啟示. 中國科學(xué):地球科學(xué), 51, doi: 10.1360/SSTe-2020-0366

                [24].?劉瀟,王強(qiáng),馬林*,王軍. 2021. 廣州市白云山片麻狀花崗巖成因及構(gòu)造意義. 地球化學(xué)50(4), 340–353.

                2020

                [25].?Liu, X., Wang, Q.*, Ma, L.*, Yang, J.H., Gou, G.N., Ou, Q. and Wang, J., 2020. Early Paleozoic intracontinental granites in the Guangzhou region of South China: Partial melting of a metasediment-dominated crustal source. Lithos, 376, p.105763.

                [26].?Liu, X., Wang, Q.*, Ma, L.*, Wyman, D.A., Zhao, Z.H., Yang, J.H., Zi, F., Tang, G.J., Dan, W., Zhou, J.S.. 2020. Petrogenesis of Late Jurassic Pb–Zn mineralized high??18O granodiorites in the western Nanling Range, South China. Journal of Asian Earth Sciences, 192, 104236. https://doi.org/10.1016/j.jseaes.2020.104236.

                [27].?Liu X., Wang Q.*, Ma L.*, Yang Z.Y., Hu W.L., Ma, Y.M., Wang J., Huang T.Y., 2020. Petrogenesis of Late Jurassic two-mica granites and associated diorites and syenite porphyries in Guangzhou, SE China. Lithos. 364-365, 105537.

                [28].?Hao, L.L., Wang, Q., Kerr, A.C., Yang, J.H., Ma, L., Qi, Y., Wang, J. and Ou, Q., 2020. Post-collisional crustal thickening and plateau uplift of southern Tibet: Insights from Cenozoic magmatism in the Wuyu area of the eastern Lhasa block.?GSA Bulletin. doi: https://doi.org/10.1130/B35659.1

                [29].?Hu, W.L., Wang, Q., Yang, J.H., Tang, G.J., Qi, Y., Ma, L., Yang, Z.Y., Sun, P., 2020. Amphibole and whole-rock geochemistry of early Late Jurassic diorites, Central Tibet: Implications for petrogenesis and geodynamic processes. Lithos, 105644. https://doi.org/10.1016/j.lithos.2020.105644.

                [30].?Fan, J.J., Li, J., Wang, Q., Zhang, L., Zhang, J., Zeng, X.L., Ma, L., Wang, Z.L., 2020. High-precision molybdenum isotope analysis of low-Mo igneous rock samples by MC–ICP–MS. Chemical Geology. 545, 119648. https://doi.org/10.1016/j.chemgeo.2020.119648.

                [31].?Tang, G.J.*, Wang, Q., Wyman, D.A., Dan, W., Ma, L., Zhang, H.X., Zhao, Z.H.. 2020. Petrogenesis of the Ulungur Intrusive Complex, NW China, and Implications for Crustal Generation and Reworking in Accretionary Orogens. Journal of Petrology,?https://doi.org/10.1093/petrology/egaa018

                [32].?王強(qiáng),唐功建,郝露露,Derek Wyman馬林,但衛(wèi),張修政,劉金恒,黃彤宇,許傳兵. 2020. 洋脊俯沖巖漿作用與成礦. 中國科學(xué):地球科學(xué), 63, 1499–1518. https://doi.org/10.1007/s11430-019-9619-9

                [33].?徐義剛,王強(qiáng),唐功建,王軍,李洪顏,周金勝,李奇維,齊玥,劉平平,馬林,范晶晶. 2020. 弧玄武巖起源:新進(jìn)展與存在問題. 中國科學(xué):地球科學(xué)63, 1969–1991. https://doi.org/10.1007/s11430-020-9675-y

                [34].?王強(qiáng),郝露露,張修政,周金勝,王軍,李奇維,馬林,張龍,齊玥,唐功建,但衛(wèi),范晶晶. 2020. 匯聚板塊邊緣的埃達(dá)克巖:成分與成因.中國科學(xué):地球科學(xué)63, 1992–2016. https://doi.org/10.1007/s11430-020-9678-y

                2019

                [35].?Ma, L.,?Kerr, A. C., Wang, Q., Jiang, Z.‐Q., Tang, G.‐J., Yang, J.‐H., et al. (2019). Nature and evolution of crust in southern Lhasa, Tibet: Transformation from microcontinent to juvenile terrane. Journal of Geophysical Research: Solid Earth, 124,?6452–6474. https://doi.org/10.1029/2018JB017106.?

                [36].?Hao, LL; Wang, Q; Wyman, DA; Yang, JH; Huang, F., Ma, L.,?Crust-mantle mixing and crustal reworking of southern Tibet during Indian continental subduction: Evidence from Miocene high-silica potassic rocks in Central Lhasa block. Lithos, 2019, 342: 407-419.

                [37].?Ou, Q., Wang, Q., Wyman, D.A., Zhang, C.F., Hao, L.L., Dan, W., Jiang, Z.Q., Wu, F.Y, Yang, J.H., Zhang, H.X., Xia, X.P., Ma, L.,?Long, X.P., Li, J., Postcollisional delamination and partial melting of enriched lithospheric mantle: Evidence from Oligocene (ca. 30 Ma) potassium-rich lavas in the Gemuchaka area of the central Qiangtang Block, Tibet. Geological Society of America Bulletin, 2019, 131(7-8): 1385-1408.

                [38].?Hao, L. L., Wang, Q., Wyman, D. A., Ma, L., Wang, J., Xia, X. P., Ou, Q. 2019. First identification of postcollisional A-type magmatism in the Himalayan-Tibetan orogen. Geology. 47(2), 187–190.

                [39].?Yang, Z.Y., Wang, Q., Yang, J.H., Dan, W., Zhang, X.Z., Ma, L., Qi, Y., Wang, J., Sun, P., 2019. Petrogenesis of Early Cretaceous granites and associated microgranular enclaves in the Xiabie Co area, central Tibet: Crust-derived magma mixing and melt extraction. Lithos. 350–351, 105199. https://doi.org/10.1016/j.lithos.2019.105199

                [40].?Ma, Y.M. Wang, Q., Wang, J., Yang, T.S., Tan, X.D., Dan, W., Zhang, X.Z., Ma, L., Wang, Z.L., Hu, W.L., Zhang, S.H., Wu, H.C., Li, H.Y., Cao, L.W., 2019. Paleomagnetic constraints on the origin and drift history of the North Qiangtang terrane in the Late Paleozoic. Geophysical Research Letters, 46, 689–697.

                [41].?Yang, Z.Y., Wang, Q., Zhang, C.F., Yang, J.H., Ma, L., Wang, J., Sun, P., Qi, Y., 2019. Cretaceous (~100?Ma) high-silica granites in the Gajin area, Central Tibet: Petrogenesis and implications for collision between the Lhasa and Qiangtang Terranes. Lithos, 324–325402-417.

                2018

                [42].?Ma, L., Kerr, A.C., Wang, Q., Jiang, Z.Q., Hu, W.L., 2018. Early Cretaceous (~140 Ma) aluminous A-type granites in the Tethyan Himalaya, Tibet: products of crust-mantle interaction during lithospheric extension. Lithos, 300-301, 212-226. doi: 10.1016/j.lithos.2017.11.023.

                [43].?Hao, L. L., Wang, Q.*, Wyman, D. A., Qi, Y., Ma, L., Huang, F., Zhang, L., Xia, X. P., Ou, Q.. 2018. First identification of mafic igneous enclaves in Miocene lavas of southern Tibet with implications for Indian continental subduction. Geophysical Research Letters, 45(16), 8205-8213. https://doi.org/10.1029/2018GL079061.

                [44].?Shen, X., Zhang, H.X., Wang, Q., Saha, A., Ma, L., 2018. Zircon U–Pb geochronology and geochemistry of Devonian plagiogranites in the Kuerti area of southern Chinese Altay, northwest China: Petrogenesis and tectonic evolution of late Paleozoic ophiolites. Geological Journal, 53(5), 1886-1905. doi: 10.1002/gj.3020.?

                2017

                [45].?Ma, L., Wang, Q., Kerr, A.C., Yang, J.H., Xia, X.P., Ou, Q., Yang, Z.Y., Sun, P., 2017. Paleocene (ca. 62 Ma) leucogranites in southern Lhasa, Tibet: products of syn-collisional crustal anatexis during slab roll-back? Journal of Petrology, 58(11): 2089-2114.

                [46].?Ma, L., Wang, Q., Li, Z.X., Wyman, D.A., Yang, J.H., Jiang, Z.Q., Liu, Y.S., Gou, G.N., Guo, H.F. 2017. Subduction of Indian continent beneath southern Tibet in the latest Eocene (~35 Ma): Insights from the Quguosha gabbros in southern Lhasa block. Gondwana Research, 41, 77-92, doi:10.1016/j.gr.2016.02.005.

                [47].?王強(qiáng),但衛(wèi),紀(jì)偉強(qiáng),張修政,梁華英,朱弟成,夏小平,馬林. 2017.中國西部燕山運動及巖漿作用與成礦. 礦物巖石地球化學(xué)通報36(4): 570-573.

                [48].?王強(qiáng),茍國寧,張修政,但衛(wèi),唐功建,馬林. 2017. 青藏高原中北部地殼流動與高原擴(kuò)展: 來自火山巖的證據(jù).中國科學(xué)基金. 2017:2, 492-498.

                2016

                [49].?Wang, Q., Hawkesworth, C. J., Wyman, D. A., Chung, S. L., Wu, F. Y., Li, X. H., Li, Z. X., Gou G. N., Zhang, X. Z., Tang, G. J., Dan, W., Ma, L., Dong, Y. H., 2016. Pliocene-Quaternary crustal melting in central and northern Tibet and insights into crustal flow. Nature communications, 7:11888, doi: 10.1038/ncomms11888.

                2015

                [50].?Ma, L., Wang, Q., Wyman, D. A., Jiang, Z.Q., Wu, F.Y., Li, X.H., Yang, J.H., Gou, G.N., Guo, H.F. 2015. Late Cretaceous back-arc extension and arc system evolution in the Gangdese area, southern Tibet: Geochronological, petrological, and Sr-Nd-Hf-O isotopic evidence from Dagze diabases, Journal of Geophysics Research: Solid Earth, 120, 6159–6181, doi:10.1002/2015JB011966.

                [51].?Jiang, Z. Q., Wang, Q., Wyman, D. A., Shi, X., Yang, J. H., Ma, L., Gou, G. N., 2015. Zircon U-Pb geochronology and geochemistry of Late Cretaceous–early Eocene granodiorites in the southern Gangdese batholith of Tibet: petrogenesis and implications for geodynamics and Cu?? Au?? Mo mineralization. International Geology Review, 57:3, 373-392.

                2014

                [52].?Ma, L., Wang, B.D., Jiang, Z.Q., Wang, Q.*, Li, Z.X., Wyman, D.A., Zhao, S.R., Yang, J.H., Gou, G.N., Guo, H.F., 2014. Petrogenesis of the Early Eocene adakitic rocks in the Napuri area, southern Lhasa: partial melting of thickened lower crust during slab break-off and implications for crustal thickening in southern Tibet. Lithos, 196-197, 321-338.

                [53].?Shen, X.M., Zhang, H.X., Wang, Q., Ma, L., Yang, Y.H. 2014. Early Silurian (~440Ma) adakitic, andesitic and Nb-enriched basaltic lavas in the southern Altay Range, Northern Xinjiang (western China): Slab melting and implications for crustal growth in the Central Asian Orogenic Belt. Lithos, 206-207: 234-251.

                [54].?Jiang, Z., Wang, Q., Wyman, D., Li, Z., Yang, J., Shi, X., Tang, G., Jia, X., Ma, L., Gou, G., Guo, H.. 2014. Transition from oceanic to continental lithosphere subduction in southern Tibet: Evidence from the Late Cretaceous-Early Oligocene (~91-30 Ma) intrusive rocks in the Chanang-Zedong area, southern Gangdese. Lithos, 196-197: 213-231.

                2013

                [55].?Ma, L., Wang, Q.*, Wyman, D.A., Jiang, Z.Q., Yang, J.H., Li, Q.L., Gou, G.N., Guo, H.F., 2013. Late Cretaceous crustal growth of southern Tibet: Petrological and Sr-Nd-Hf-O isotopic evidence from the Zhengga diorite-gabbro suites in the Gangdese area. Chemical Geology. 349–350, 54–70.

                [56].?Ma, L., Wang, Q.*, Li, Z.X., Wyman, D.A., Jiang, Z.Q., Yang, J.H., Gou, G.N., Guo, H.F., 2013. Early Late Cretaceous (ca. 93 Ma) norites and hornblendites in the Milin area, eastern Gangdese: lithosphere-asthenosphere interaction during slab roll-back and an insight into early Late Cretaceous (ca. 100-80 Ma) magmatic "flare-up" in southern Lhasa (Tibet). Lithos. 172–173, 17–30.

                [57].?Ma, L., Wang, Q.*, Wyman, D.A., Li, Z.X., Jiang, Z.Q., Yang, J.H., Gou, G.N., Guo, H.F.. 2013. Late Cretaceous (100-89 Ma) magnesian charnockites with adakitic affinities in the Milin area, eastern Gangdese: partial melting of subducted oceanic crust and implications for crustal growth in southern Tibet. Lithos. 175–176, 315–332.

                [58].?沈曉明, 張海祥, 馬林, 阿爾泰南緣晚石炭世淡色花崗巖的發(fā)現(xiàn)及其構(gòu)造意義, 大地構(gòu)造與成礦學(xué), 2013, 37(4): 721-729.

                [59].?沈曉明, 張海祥, 馬林, 阿爾泰南緣杰爾庫都克酸性巖脈LA-ICP-MS鋯石U-Pb測年, 新疆地質(zhì), 2013, 31(3): 157-161.

                [60].?沈曉明, 張海祥, 馬林, 新疆阿爾泰地區(qū)庫爾提蛇綠巖的鋯石U-Pb和角閃石40Ar/39Ar年代學(xué)及其地質(zhì)意義, 桂林理工大學(xué)學(xué)報, 2013, 33(3): 394-405.

                2012及以前

                [61].?Qiang Wang, Xian-Hua Li, Xiao-Hui Jia, Derek Wyman, Gong-Jian Tang, Zheng-Xiang Li, Lin Ma, Yue-Heng Yang, Zi-Qi Jiang, Guo-Ning Gou. 2012. Late Early Cretaceous adakitic granitoids and associated magnesian and potassium‐rich mafic enclaves and dikes in the Tunchang–Fengmu area, Hainan Province (South China): partial melting of lower crust and mantle and magma hybridization. Chemical Geology, 328, 222-243.

                [62].?沈曉明, 張海祥, 馬林. 2010. 洋脊俯沖及其在新疆阿爾泰地區(qū)存在的可能證據(jù). 大地構(gòu)造與成礦學(xué), 34(2): 181-195.

                [63].?馬林,張海祥,張伯友,牛賀才. 2008. 新疆北部庫爾提蛇綠巖中角閃片巖的原巖恢復(fù)及其成因.巖石學(xué)報244):673-680.

                [64].?張海祥,牛賀才,沈曉明,馬林,于學(xué)元. 2008. 阿爾泰造山帶南緣和準(zhǔn)噶爾板塊北緣晚古生代構(gòu)造演化及多金屬成礦作用. 礦床地質(zhì)27(5): 596-604.

                [65].?張海祥,沈曉明,馬林,牛賀才,于學(xué)元. 2008. 新疆北部富蘊縣埃達(dá)克巖的同位素年代學(xué)及其對古亞洲洋板塊俯沖時限的制約. 巖石學(xué)報24(5):1054-1058.

                [66].?馬林, 張海祥, 沈曉明.2008. 庫爾提角閃片巖中角閃石的地球化學(xué)特征及成因討論. 礦物巖石地球化學(xué)通報, 27(增刊):262-264.

                [67].?Haixiang Zhang, Xiaoming Shen, Lin Ma. 2008. Geochronology of the Altay adakite and the initiation of the Paleo-Asian Ocean subduction. Geochimica et Cosmochimica Acta. 72 (12S), A1081.

                ?

                承擔(dān)科研項目情況:
              •   1.國家自然科學(xué)基金委優(yōu)秀青年科學(xué)基金《科希斯坦弧地球成熟演化機(jī)制及動力學(xué)》,2022-2024,主持

                  2.國家自然科學(xué)基金委面上基金《羌塘西部紅山湖鈉質(zhì)基性巖巖石成因及其對青藏高原地幔演化的啟示》,2019-2022,主持

                  3.國家第二次青藏高原綜合科學(xué)考察研究專題《典型地區(qū)巖石圈組成、演化與深部過程》,2019-2022,參加

                  4.國家自然科學(xué)基金委創(chuàng)新研究群體科學(xué)基金《陸內(nèi)巖石圈演化與淺表響應(yīng)》,2021-2024,參加

                  5.中國科學(xué)院絲路環(huán)境先導(dǎo)專項子子課題《泛第三極主要與大規(guī)模成礦有關(guān)重要巖漿作用與動力學(xué)機(jī)制》,2018-2022,參加

                  6.國家重點研發(fā)計劃深地資源勘查開采專項“青藏高原碰撞帶殼幔過程與成巖成礦實驗”第9課題第三專題《正向碰撞帶深部巖石圈組成和熱演化過程對成礦作用的制約》,2016-2020,主持

                  7.國家自然科學(xué)基金委青年科學(xué)基金項目《拉薩地塊南部正嘎早古新世淡色花崗巖的成因及其對印度-亞洲大陸碰撞的啟示》,2015-2017,主持

                  ?

                研究生培養(yǎng)情況:

                  黃橙橙(女) 碩士(合作培養(yǎng)2015-2017)

                  劉瀟? ? ? ? ? ? ? ?博士(合作培養(yǎng)2016-2021)

                  范晶晶(女) 博士(合作培養(yǎng)2017-2021)

                  耿啟凡? ? ? ? ? ?碩士(2018-2022)

                  李成? ? ? ? ? ? ? 碩士研究生在讀(2020- )

                  喬偉? ? ? ? ? ? ? 碩士研究生在讀(2021- )

                  蒲瑞? ??(女)碩士研究生在讀(2022- )